(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(x)) → mark(f(f(x)))
chk(no(f(x))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
mat(f(x), f(y)) → f(mat(x, y))
chk(no(c)) → active(c)
mat(f(x), c) → no(c)
f(active(x)) → active(f(x))
f(no(x)) → no(f(x))
f(mark(x)) → mark(f(x))
tp(mark(x)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(no(x)) →+ no(f(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / no(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
active(f(x)) → mark(f(f(x)))
chk(no(f(x))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
mat(f(x), f(y)) → f(mat(x, y))
chk(no(c)) → active(c)
mat(f(x), c) → no(c)
f(active(x)) → active(f(x))
f(no(x)) → no(f(x))
f(mark(x)) → mark(f(x))
tp(mark(x)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
active(f(x)) → mark(f(f(x)))
chk(no(f(x))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
mat(f(x), f(y)) → f(mat(x, y))
chk(no(c)) → active(c)
mat(f(x), c) → no(c)
f(active(x)) → active(f(x))
f(no(x)) → no(f(x))
f(mark(x)) → mark(f(x))
tp(mark(x)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
active,
f,
chk,
mat,
tpThey will be analysed ascendingly in the following order:
active = f
active < chk
f < chk
f < mat
f < tp
mat < chk
chk < tp
mat < tp
(8) Obligation:
TRS:
Rules:
active(
f(
x)) →
mark(
f(
f(
x)))
chk(
no(
f(
x))) →
f(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
mat(
f(
x),
f(
y)) →
f(
mat(
x,
y))
chk(
no(
c)) →
active(
c)
mat(
f(
x),
c) →
no(
c)
f(
active(
x)) →
active(
f(
x))
f(
no(
x)) →
no(
f(
x))
f(
mark(
x)) →
mark(
f(
x))
tp(
mark(
x)) →
tp(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
Generator Equations:
gen_mark:no:X:y:c3_0(0) ⇔ c
gen_mark:no:X:y:c3_0(+(x, 1)) ⇔ mark(gen_mark:no:X:y:c3_0(x))
The following defined symbols remain to be analysed:
f, active, chk, mat, tp
They will be analysed ascendingly in the following order:
active = f
active < chk
f < chk
f < mat
f < tp
mat < chk
chk < tp
mat < tp
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
TRS:
Rules:
active(
f(
x)) →
mark(
f(
f(
x)))
chk(
no(
f(
x))) →
f(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
mat(
f(
x),
f(
y)) →
f(
mat(
x,
y))
chk(
no(
c)) →
active(
c)
mat(
f(
x),
c) →
no(
c)
f(
active(
x)) →
active(
f(
x))
f(
no(
x)) →
no(
f(
x))
f(
mark(
x)) →
mark(
f(
x))
tp(
mark(
x)) →
tp(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
Generator Equations:
gen_mark:no:X:y:c3_0(0) ⇔ c
gen_mark:no:X:y:c3_0(+(x, 1)) ⇔ mark(gen_mark:no:X:y:c3_0(x))
The following defined symbols remain to be analysed:
active, chk, mat, tp
They will be analysed ascendingly in the following order:
active = f
active < chk
f < chk
f < mat
f < tp
mat < chk
chk < tp
mat < tp
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol active.
(12) Obligation:
TRS:
Rules:
active(
f(
x)) →
mark(
f(
f(
x)))
chk(
no(
f(
x))) →
f(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
mat(
f(
x),
f(
y)) →
f(
mat(
x,
y))
chk(
no(
c)) →
active(
c)
mat(
f(
x),
c) →
no(
c)
f(
active(
x)) →
active(
f(
x))
f(
no(
x)) →
no(
f(
x))
f(
mark(
x)) →
mark(
f(
x))
tp(
mark(
x)) →
tp(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
Generator Equations:
gen_mark:no:X:y:c3_0(0) ⇔ c
gen_mark:no:X:y:c3_0(+(x, 1)) ⇔ mark(gen_mark:no:X:y:c3_0(x))
The following defined symbols remain to be analysed:
mat, chk, tp
They will be analysed ascendingly in the following order:
mat < chk
chk < tp
mat < tp
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol mat.
(14) Obligation:
TRS:
Rules:
active(
f(
x)) →
mark(
f(
f(
x)))
chk(
no(
f(
x))) →
f(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
mat(
f(
x),
f(
y)) →
f(
mat(
x,
y))
chk(
no(
c)) →
active(
c)
mat(
f(
x),
c) →
no(
c)
f(
active(
x)) →
active(
f(
x))
f(
no(
x)) →
no(
f(
x))
f(
mark(
x)) →
mark(
f(
x))
tp(
mark(
x)) →
tp(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
Generator Equations:
gen_mark:no:X:y:c3_0(0) ⇔ c
gen_mark:no:X:y:c3_0(+(x, 1)) ⇔ mark(gen_mark:no:X:y:c3_0(x))
The following defined symbols remain to be analysed:
chk, tp
They will be analysed ascendingly in the following order:
chk < tp
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol chk.
(16) Obligation:
TRS:
Rules:
active(
f(
x)) →
mark(
f(
f(
x)))
chk(
no(
f(
x))) →
f(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
mat(
f(
x),
f(
y)) →
f(
mat(
x,
y))
chk(
no(
c)) →
active(
c)
mat(
f(
x),
c) →
no(
c)
f(
active(
x)) →
active(
f(
x))
f(
no(
x)) →
no(
f(
x))
f(
mark(
x)) →
mark(
f(
x))
tp(
mark(
x)) →
tp(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
Generator Equations:
gen_mark:no:X:y:c3_0(0) ⇔ c
gen_mark:no:X:y:c3_0(+(x, 1)) ⇔ mark(gen_mark:no:X:y:c3_0(x))
The following defined symbols remain to be analysed:
tp
(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol tp.
(18) Obligation:
TRS:
Rules:
active(
f(
x)) →
mark(
f(
f(
x)))
chk(
no(
f(
x))) →
f(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
mat(
f(
x),
f(
y)) →
f(
mat(
x,
y))
chk(
no(
c)) →
active(
c)
mat(
f(
x),
c) →
no(
c)
f(
active(
x)) →
active(
f(
x))
f(
no(
x)) →
no(
f(
x))
f(
mark(
x)) →
mark(
f(
x))
tp(
mark(
x)) →
tp(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
Generator Equations:
gen_mark:no:X:y:c3_0(0) ⇔ c
gen_mark:no:X:y:c3_0(+(x, 1)) ⇔ mark(gen_mark:no:X:y:c3_0(x))
No more defined symbols left to analyse.